Targeted metabolic labeling of yeast N-glycans with unnatural sugars.

نویسندگان

  • Mark A Breidenbach
  • Jennifer E G Gallagher
  • David S King
  • Brian P Smart
  • Peng Wu
  • Carolyn R Bertozzi
چکیده

Metabolic labeling of glycans with synthetic sugar analogs has emerged as an attractive means for introducing nonnatural chemical functionality into glycoproteins. However, the complexities of glycan biosynthesis prevent the installation of nonnatural moieties at defined, predictable locations within glycoproteins at high levels of incorporation. Here, we demonstrate that the conserved N-acetyglucosamine (GlcNAc) residues within chitobiose cores of N-glycans in the model organism Saccharomyces cerevisiae can be specifically targeted for metabolic replacement by unnatural sugars. We introduced an exogenous GlcNAc salvage pathway into yeast, allowing cells to metabolize GlcNAc provided as a supplement to the culture medium. We then rendered the yeast auxotrophic for production of the donor nucleotide-sugar uridine-diphosphate-GlcNAc (UDP-GlcNAc) by deletion of the essential gene GNA1. We demonstrate that gna1Delta strains require a GlcNAc supplement and that expression plasmids containing both exogenous components of the salvage pathway, GlcNAc transporter NGT1 from Candida albicans and GlcNAc kinase NAGK from Homo sapiens, are required for rescue in this context. Further, we show that cells successfully incorporate synthetic GlcNAc analogs N-azidoacetyglucosamine (GlcNAz) and N-(4-pentynoyl)-glucosamine (GlcNAl) into cell-surface glycans and secreted glycoproteins. To verify incorporation of the nonnatural sugars at N-glycan core positions, endoglycosidase H (endoH)-digested peptides from a purified secretory glycoprotein, Ygp1, were analyzed by mass spectrometry. Multiple Ygp1 N-glycosylation sites bearing GlcNAc, isotopically labeled GlcNAc, or GlcNAz were identified; these modifications were dependent on the supplement added to the culture medium. This system enables the production of glycoproteins that are functionalized for specific chemical modifications at their glycosylation sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vivo Targeting of Metabolically Labeled Cancers with Ultra-Small Silica Nanoconjugates

Unnatural sugar-mediated metabolic labeling of cancer cells, coupled with efficient Click chemistry, has shown great potential for in vivo imaging and cancer targeting. Thus far, chemical labeling of cancer cells has been limited to the small-sized azido groups, with the large-sized and highly hydrophobic dibenzocyclooctyne (DBCO) being correspondingly used as the targeting ligand. However, sur...

متن کامل

Substrate specificity of the sialic acid biosynthetic pathway.

Unnatural analogues of sialic acid can be delivered to mammalian cell surfaces through the metabolic transformation of unnatural N-acetylmannosamine (ManNAc) derivatives. In previous studies, mannosamine analogues bearing simple N-acyl groups up to five carbon atoms in length were recognized as substrates by the biosynthetic machinery and transformed into cell surface sialoglycoconjugates [Kepp...

متن کامل

Click labeling of unnatural sugars metabolically incorporated into viral envelope glycoproteins enables visualization of single particle fusion.

Enveloped viruses infect target cells by fusing their membrane with cellular membrane through a process that is mediated by specialized viral glycoproteins. The inefficient and highly asynchronous nature of viral fusion complicates studies of virus entry on a population level. Single virus imaging in living cells has become an important tool for delineating the entry pathways and for mechanisti...

متن کامل

A Strategy for the Selective Imaging of Glycans Using Caged Metabolic Precursors

Glycans can be imaged by metabolic labeling with azidosugars followed by chemical reaction with imaging probes; however, tissue-specific labeling is difficult to achieve. Here we describe a strategy for the use of a caged metabolic precursor that is activated for cellular metabolism by enzymatic cleavage. An N-azidoacetylmannosamine derivative caged with a peptide substrate for the prostate-spe...

متن کامل

Tissue-based metabolic labeling of polysialic acids in living primary hippocampal neurons.

The posttranslational modification of neural cell-adhesion molecule (NCAM) with polysialic acid (PSA) and the spatiotemporal distribution of PSA-NCAM play an important role in the neuronal development. In this work, we developed a tissue-based strategy for metabolically incorporating an unnatural monosaccharide, peracetylated N-azidoacetyl-D-mannosamine, in the sialic acid biochemical pathway t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 9  شماره 

صفحات  -

تاریخ انتشار 2010